

Reply to “Basal buoyancy and fast-moving glaciers: in defense of analytic force balance” by C. J. van der Veen (2016)

Terence J. Hughes, Professor Emeritus of Earth Sciences and Climate Change
University of Maine

404 North Sixth Street, Fort Pierre, South Dakota 57532, U.S.A.

6 **Abstract.** Two approaches to ice-sheet modeling are available. Analytical modeling is the
7 traditional approach. It solves the force (momentum), mass, and energy balances to obtain
8 three-dimensional solutions over time, beginning with the Navier-Stokes equations for the
9 force balance. Geometrical modeling employs simple geometry to solve the force and mass
10 balance in one dimension along ice flow. It is useful primarily to provide the first-order
11 physical basis of ice-sheet modeling for students with little background in mathematics
12 (Hughes, 2012). The geometric approach uses changes in ice-bed coupling along flow to
13 calculate changes in ice elevation and thickness, using floating fraction ϕ along a flowline
14 or flowband, where $\phi = 0$ for sheet flow, $0 < \phi < 1$ for stream flow, and $\phi = 1$ for shelf flow.
15 This leads to confusion in reconciling the two approaches (Van der Veen, 2016). An attempt
16 is made at reconciliation.

17 Introduction

18 Cornelis "Kees" Van der Veen's comparison of geometric and analytic approaches to the
 19 force balance in glaciology in *The Cryosphere* (Van der Veen, 2016) is most welcome
 20 because he takes seriously my geometrical approach to the longitudinal force balance,
 21 citing many of my paper from when I first introduced the concept (Hughes, 1992) to the
 22 latest application (Hughes et al., 2016). To begin, the analytic force balance is not
 23 challenged. The geometric force balance is useful only for one-dimensional flow along ice-
 24 sheet flowlines or flowbands of constant width. For two-dimensional flow in the map plane,
 25 width become a variable and geometrical areas become geometrical volumes; substantially
 26 increasing geometrical complexity with little advance in physical insight. The analytic force
 27 balance is typically obtained by solving the Navier-Stokes equations, which can be done in
 28 three dimensions and, when including the mass and energy balances, becomes time-
 29 dependent. The geometrical approach is useful for understanding the force balance by
 30 comparing the areas of right triangles and rectangles (or parallelograms).

31 Problems with Van der Veen (2016)

32 Equations (1), (2), (7), and (15) in Van der Veen (2016) can be confusing because they
 33 employ open parenthesis) instead of closed parentheses () so terms are not properly
 34 separated, and the symbol ∂ is used as a partial derivative, as ice density, as a floating
 35 fraction of ice, and with subscripts, as water density and as stresses. Despite that, these
 36 equations are familiar to anyone who uses them in the analytic force balance and in my
 37 geometric force balance.

38 More substantive are my concerns with his Figures. His Figure 1 is fine, but his Figure 2
39 compares apples and oranges, a longitudinal stress gradient with basal and side drag
40 stresses and a gravitational driving stress. A stress is not the same as a stress gradient but

41 it allows Van der Veen (2016) to claim my gravitational “pulling stress” (Hughes, 1992)
42 acts in the same direction as the gravitational driving stress. My pulling stress is an actual
43 stress, the longitudinal tensile stress, not a longitudinal stress gradient. The pulling stress
44 exists from the calving front to the grounding line of an ice shelf and up ice streams that
45 supply the ice shelf. The pulling stress at the calving front of an ice shelf was derived
46 analytically by Weertman (1957) and geometrically by Robin (1958).

47 Readers of *The Cryosphere* can see the geometric force balance applied to the calving
48 front of an ice shelf and to a fully grounded ice sheet on a flat bed derived geometrically in
49 Appendix A of Hughes et al. (2016). These are the simplest applications that anyone who
50 knows the area of a triangle is half the height times the base can understand, the height
51 being ice or water height and the base being ice or water basal pressure. Van der Veen
52 (2016) sees these applications for sheet and shelf flow, but not for stream flow.

53 Van der Veen (2016) states my F_g in his Equation (16) is not a longitudinal
54 gravitational driving force, but it is. Pressure has no direction so to get a longitudinal force
55 along ice flow it has be multiplied by the transverse cross-sectional area, which is variable
56 ice height for constant ice width. Hence, for basal ice pressure P_l the gravitational driving
57 force is average ice pressure \bar{P}_l times ice height H , which is the area of triangle ADF in his
58 Figure 3, which is reproduced as my Figure 1 (left) for comparison with my Figure 2, which
59 shows the correct geometry, Figure 5 in Hughes et al. (2016).

60 Figure 1 (left), Figure 3 in Van der Veen (2016), indicates he does not understand the
61 geometrical force balance for ice streams. Line AF should be parallel to line BE because
62 they both show how ice pressure increases with depth. Line CE shows how water pressure
63 increases with depth, as is obvious at the calving front. In the geometrical force balance, the
64 longitudinal gravitational driving force is area ADF of the big triangle. Fitted inside ADF are
65 a resisting flotation force given by area BDE for the floating ice fraction and a resisting drag
66 force given by area ABF for the grounded ice fraction. Inside BDE is area CDE for the
67 resisting force from water pressure and area BCE for the resisting force from the tensile
68 strength of ice. Inside ABF is the triangle above B for basal drag and the parallelogram
69 below B for side drag. Resistance from basal drag is the area of the triangle above B.
70 Resistance from side drag is the area of the parallelogram below B if lines BE and AF are
71 made parallel. If BE is made part of AF a rectangle would replace the parallelogram but the
72 area would be unchanged, see my Figure 2. That's all there is to it. The only remaining task
73 is to replace forces with products of stresses and lengths upon which the stresses act along
74 a flowline or a flowband of constant width. My solution for the force balance is exact. All
75 gravitational and resisting forces in the longitudinal direction of ice flow are included.

76 For example, at distance x from the ice-shelf grounding line in Figure 2, gravitational
77 driving force $F_g = \bar{P}_l h_l$ is resisted by the sum of the upstream tensile pulling force
78 $F_t = \sigma_t h_l$ and the downstream compressive pushing force $F_c = \sigma_c h_l$ so $\sigma_t = \bar{P}_l - \sigma_c$. Here
79 resisting force $\sigma_c h_l$ is balanced by the gravitational force given by areas 1+2+3 in Figure 2
80 (center and bottom), and includes all downstream resistance due to averaged basal and
81 side shear stresses $\bar{\tau}_o$ and $\bar{\tau}_s$ respectively linked to gravitational areas 1 and 2, plus local

82 water stress σ_w linked to area 3. The floating fraction of ice for floating area $w_F \Delta x$ in total
83 area $w_I \Delta x$ shown in my Figure 3 is $\phi = w_F / w_I = h_F / h_I = P_F / P_I$ for basal pressures P_F and
84 P_I that support ice of respective heights h_F and h_I . Pulling force $\sigma_T h_I$ resists the
85 gravitational driving force given by area 4 in Figure 2 (bottom), which is area 3+4 minus
86 area 3. Area 3+4 is one-half flotation height $h_F = h_I \phi$ times basal floating length $P_F = P_I \phi$,
87 so area 3+4 is $\bar{P}_I h_I \phi^2$. Area 3 is one-half height $h_w = (\rho_I / \rho_w) h_F = (\rho_I / \rho_w) h_I \phi$ times the
88 same basal floating length $P_F = P_I \phi$. Then the tensile pulling stress is $\sigma_T = \bar{P}(1 - \rho_I / \rho_w) \phi^2$.
89 It is that simple. At the calving front where $\phi = 1$ this is the solution obtained by Weertman
90 (1957) and Robin (1958). Table 1 lists all stresses resisting gravitational forcing at x .

91 Figure 1(right) shows Figure 4 in Van der Veen (2016). His Figure 4(a) is too simplistic.
92 If it were true there would be no thinning of a flat ice shelf or at ice divides of an ice sheet
93 because neither has a surface slope. Yet thinning of both occurs. For ice shelves the correct
94 analytical solution was provided by Weertman (1957, Appendix). Hughes (2012a, Chapter
95 9) provided the correct geometrical solution even if the ice shelf has a thickness gradient in
96 the flow direction. Raymond (1983) provided the correct analytical solution for ice divides.
97 The gravitational driving stress in his Figure 4(a) is the tensile longitudinal deviator stress,
98 my pulling stress, for both ice shelves and ice divides. The two triangles have equal areas so
99 there can be no spreading in his way of thinking because there is no ice surface slope. For
100 an ice shelf, one of his triangles should be moved to the calving front. Then he would see
101 the pulling force in action because a water triangle would replace his ice triangle. For an ice
102 divide, downslope motion on opposite flanks of the ice divide produce a longitudinal tensile
103 stress under the ice divide, and that lowers the ice divide.

104 Figure 1(right) also shows Figure 4(b) in Van der Veen (2016), which has a surface
105 slope, causing a difference in area of his two triangles. This difference is his gravitational
106 driving force for sheet flow, which is balanced by basal drag that requires a basal shear
107 stress applied along length Δx between the triangles as a drag force. There is no basal drag
108 under an ice shelf, except where surface ice ripples appear above basal pinning points, see
109 Figure 2. For stream flow, Figure 2 gives the correct geometrical representation of
110 gravitational forcing.

111 Van der Veen (2016) repeatedly refers to my 2008 unpublished research report, which
112 is not readily available. More complete and better treatments are in Hughes (2012a) and
113 Hughes et al. (2016). Van der Veen states, "Balance of forces is only meaningful if applied to
114 flow-line segments, not single locations. Consequently, the concept of force balance at any
115 location is inherently flawed." Not true. The balance is meaningful at the calving front of an
116 ice shelf, a single location (Hughes et al., 2016, Appendix A) and at any upstream point by
117 including a local compressive stress σ_c which includes downstream resistance to ice flow
118 all the way to the calving front, see Figure 2 (middle), and Equations (11) and (19) in
119 Hughes et al. (2016).

120 I agree with Van der Veen (2016) that longitudinal stress gradients are important, and I
121 include downstream resistance to ice flow in my force balance at any point location, see
122 Figure 2 (top). Resisting stresses at that point are in Table 12.1 of Hughes (2012a) and are

123 Equations (11) through (18) in Hughes et al. (2016). My longitudinal stress gradients
124 include basal and side shear stresses averaged over the downstream length to the calving
125 front of a linear flowband, see Table 12.1, divided by the corresponding downstream
126 flowband length, for sheet ($\partial = 0$), stream ($0 < \partial < 1$), and shelf ($\partial = 1$) flow, where ∂ is the
127 floating fraction of ice in Van der Veen (2016), and is my ϕ .

128 Referring to Hughes (2008), Van der Veen (2016) is incorrect in stating I believe lateral
129 drag vanishes at the center of a glacier. Figure 1 (left) is his Figure 3, and represents his
130 longitudinal gravitational driving forces along flow if his lines AF and BE are parallel. Then
131 his area ABEF is gravitational forcing resisted by both basal and side drag in an ice stream,
132 neither of which vanishes until the ice stream becomes a freely floating ice shelf without
133 basal and side drag, see Figure 6 in Hughes et al. (2016). Only when the solution is for a
134 flowline, not a flowband, does the side shear stress, representing lateral drag, vanish. My
135 correct counterpart to Figure 3 in Van der Veen (2016) is Figure 2.

136 The Geometrical Force Balance

137 I developed the geometrical force balance to teach the fundamentals of glaciology to
138 students with an inadequate background in mathematics, usually students studying to be
139 glacial geologists, so my geometrical approach was designed to make maximum use of
140 glacial geology in reconstructing former ice sheets (Hughes, 1998, Chapters 9 and 10) and
141 in demonstrating how basal thermal conditions produce glacial geology under present-day
142 ice sheets (Hughes, 1998, Chapter 3). Previously I had spent more time teaching calculus
143 than glaciology because the Navier-Stokes equations had to be integrated in the force
144 balance.

145 My geometrical force balance is shown in Figure 2, which is Figure 5 in Hughes et al.
146 (2016). Along incremental length Δx , change ΔF_G in the longitudinal gravitational driving
147 force F_G is balanced by change ΔF_T in the tensile pulling force F_T plus change ΔF_W in the
148 water buttressing force F_W plus basal drag force F_O plus side drag force F_S , where
149 $F_F = F_T + F_W$ is a flotation force that requires basal water. Dividing by Δx and letting
150 $\Delta x \rightarrow 0$ gives as the longitudinal gravitational force gradient

$$151 \quad \partial F_G / \partial x = \partial(\bar{P}_I h_I) / \partial x = P_I \alpha_I = \partial(\sigma_F h_I) / \partial x + \tau_O + 2\tau_S (h_I / w_I)$$

152 where the bed is represented by an up-down staircase with successive Δx steps so ice
153 thickness gradient α_I equals α for ice surface slope, P_I is the overburden ice pressure at
154 the base, τ_O is the basal shear stress, τ_S is the side shear stress for two sides, h_I is ice
155 thickness, h_W is the height of water and h_F is the flotation height of ice that would be
156 supported by basal water pressure P_W such that $P_W = P_I$ and $h_W = (\rho_I / \rho_W)h_I$ when $h_F = h_I$
157 for floating fraction $\phi = 1$, and $\sigma_F = \sigma_T + \sigma_W$ is a flotation stress equal to ice tensile stress
158 σ_T in the Weertman (1957) and Robin (1958) solutions plus water buttressing stress σ_W .
159 Together they resist gravitational forcing in an ice shelf and in the floating fraction of an ice
160 stream. My σ_F would be R_{xx} in Equation (1) of Van der Veen (2016), taking account of the

161 different sign conventions, except my σ_F always requires basal water that uncouples ice
162 from the bed.

163 Resistance from my σ_w may be akin to bridging stresses across water-filled cavities
164 discussed by Van der Veen (2016). The existence of σ_w in the geometric force balance is
165 not readily apparent from analytic solutions of the Navier-Stokes equations, but Van der
166 Veen (2016) may have teased it out with his bridging stress, which forces him to add
167 resistance by including steep shear-stress gradients on each side of his water-filled cavities.
168 He maintains his cavities are small so these gradients average out to zero along an ice
169 stream, eliminating the need for my σ_w . They cannot average to zero if cavities get bigger
170 and closer together downstream, as required to progressively uncouple ice from the bed.
171 Then cavities themselves have a size and distribution gradient. Figure 3, which is Figure 4
172 in Hughes et al. (2016), shows my concept of water-filled cavities in area $w_i \Delta x$ under an ice
173 stream. The plain fact is we do not know which concept of cavities is correct.

174 I developed the geometrical force balance over some decades, from Hughes (1992)
175 through Hughes et al. (2016). My papers are a work in progress, see pages 201-202 of
176 Hughes (2016) regarding h_w , h_F , σ_w , and σ_F not included in earlier papers. To access my
177 most recent thinking, see Hughes (2012) and Hughes et al. (2016). All the earlier studies
178 are flawed in various ways. The last ones may also have flaws I haven't detected. Criticisms
179 by Van der Veen (2016) are mainly directed at my earlier flawed papers.

180 This response gives me an opportunity to correct three mistakes in Hughes (2012a).
181 They will be obvious to the careful reader. The first line in Equation (12.9) should be:

$$182 \quad \partial(\sigma_F h_I) / \partial x = \partial \left[\frac{1}{2} \rho_I g h_I^2 \phi^2 \right] / \partial x = P_I \phi (\phi \alpha_I + h_I \partial \phi / \partial x)$$

183 and in the second line ϕ should be ϕ^2 . In the denominator of Equation (17.18), r should be
184 replaced by $(a - r)$. The first line of Equation (22.18) should be:

$$185 \quad \Delta h_i^* / \Delta x = \phi^2 \left(\frac{\Delta h_I}{\Delta x} \right)_i + \left(\frac{h_I}{2} \right)_i \frac{\Delta \phi^2}{\Delta x} + \frac{(\tau_o)_i}{\rho_I g h_I^*} + \frac{2(\tau_s)_i}{\rho_I g w_I} = \frac{(\tau_o^*)_i}{\rho_I g h_I^*}$$

186 Equation (22.18) applies to sheet flow, for which $\phi = \partial \phi / \partial x = 0$ and τ_o^* increases
187 resistance from basal drag τ_o by including side drag τ_s in flowbands having some side
188 shear. Since tributaries supplying ice streams are ubiquitous in the sheet-flow interior of
189 the Antarctic Ice Sheet (Hughes, 2012b), and tributaries are flowbands, side shear must be
190 taken into account even for sheet flow.

191 **Concluding remarks**

192 May I conclude with some general observations? Suppose an iceberg were released
193 where the two equal triangles meet in Figure 1 (right). This is Figure 4(a) in Van der Veen
194 (2016) for his ice shelf. He would have us believe the force balance was suddenly

195 transformed to the balance analyzed by Robin (1978) at the calving front for the same ice
196 thickness. But the force balance does not change. Gordon Robin also did not understand
197 this. I submitted my manuscript, "On the pulling power of ice streams" to the Journal of
198 Glaciology in 1988. Gordon rejected it on the grounds that the geometrical force balance he
199 used at the calving front didn't apply back to the grounding line and up ice streams that
200 supply the ice shelf because water height h_w existed only at the calving front. My reply to
201 that is given on pages 201-202 of Hughes et al. (2016). I had given my manuscript to
202 Mikhail Grosswald and he showed it to Russian glaciologists, resulting in an invitation to
203 present my geometrical force balance to the U.S.S.R. Academy of Sciences. In case Gordon
204 had spotted a fatal flaw, on my way to Moscow I stopped in Cambridge to discuss it with
205 Gordon and Charles Swithinbank. Charles understood the concept. Gordon did not; he just
206 "knew" the concept had to be wrong. My manuscript was finally published four years later
207 through the efforts of Garry Clarke as Editor-in-Chief (Hughes, 1992).

208 I had the same experience with Johannes Weertman. When I presented my "theory of
209 thermal convection in polar ice sheets" at a 1975 symposium of the International
210 Glaciological Society (Hughes, 1976), Hans told me, "I feel in my bones it doesn't happen." I
211 replied, "Let me know when you hear from your brain." Well, it still hasn't "happened" even
212 when it seemed to me the evidence was staring us right in the face (Hughes, 1985).
213 Weertman's "bones" may be more reliable than Hughes' brain. Be that as it may, now I
214 believe thermal convection rolls underlie tributaries of ice streams, which are ubiquitous
215 on the Antarctic Ice Sheet, and I have recommended field tests of this idea (Hughes, 2012).

216 Here's another example: The I.G.S. reviewers didn't like the way I used glacial geology to
217 reconstruct ice sheets at the Last Glacial Maximum 18,000 years ago from the bottom up
218 for CLIMAP (Climate: Long-range Investigation, Mapping, and Prediction) in 1980, so
219 George Denton and I published our CLIMAP work as a book (Denton and Hughes, 1981).
220 The book is now a classic. The bottom-up geometrical approach using glacial geology can
221 also be used to reconstruct ice sheets for a whole glaciation cycle (Hughes, 1998, Chapters
222 9 and 10), and for comparison with ice sheets reconstructed using the analytical approach
223 (Fastook and Hughes, 2013).

224 These experiences characterize my half-century in science. Cornelis van der Veen
225 understands ice dynamics as well as anyone, so I am left with the puzzlement expressed by
226 the Apostle Paul in Acts 28:26. "You may listen carefully yet you will never understand; you
227 may look intently yet you will never see." He is not alone. Reviewers of his paper also did
228 not see the obvious. Maybe it is obvious only to me.

229 *Acknowledgements.* I thank Cornelis van der Veen for giving me the opportunity to further
230 explain the geometric force balance in relation to the analytic force balance.

231 **References**

232 Denton, G.H., and Hughes, T.J., Eds.: The Last Great Ice Sheets. New York: Wiley
233 Interscience, 484 pages, 1981.

234 Fastook, J.L., and Hughes, T.J.: New perspectives on paleoglaciology. *Quat. Sci. Rev.*,

235 Hughes, T.: The theory of thermal convection in polar ice sheets. *J. Glaciol.*, 16(74), 41-71,
236 1976.

237 Hughes, T.: Thermal convection in ice sheets: We look but do not see. *J. Glaciol.*, 31(107),
238 39-48, 1985.

239 Hughes, T.J.: *Ice Sheets*. Oxford, U.K., Oxford Univ. Press, 343 pages, 1998.

240 Hughes, T.: On the pulling power of ice streams. *J. Glaciol.*, 38, 125-151, 1992.

241 Hughes, T.: Holistic Ice Sheet Modeling: A First-Order Approach. New York: Nova
242 Publishers, 261 pp., 2012a.

243 Hughes, T.: Are ice-stream tributaries the surface expression of thermal convection rolls in
244 the Antarctic ice sheet? *J. Glaciol.* 58(210), 811-814, 2012b.

245 Hughes, T., Sargent, A., Fastook, J., Purdon, K., Li, J., Yan, J.-B., and Gogineni, S.: Sheet, stream,
246 and shelf flow as progressive ice-bed uncoupling: Byrd Glacier, Antarctica and
247 Jakobshavn Isbrae, Greenland. *The Cryosphere*, 10, 193-225, doi:10.5194/tc-10- 193-
248 2016, 2016.

249 Raymond, C.F.: Deformation in the vicinity of ice divides. *J. Glaciol.*, 29(103), 357-373, 1983.

250 Robin, G. deQ.: Glaciology III: Seismic shooting and related investigations. *Scientific Results*
251 of the Norwegian, British, Swedish Antarctic Expedition, 1949-1952, 5, 111-125, 1958.

252 Van der Veen, C.J.: Basal buoyancy and fast-moving glaciers: in defense of analytic force
253 balance. *The Cryosphere*, 10, 1331-1337, 2016.

254 Weertman, J.: Deformation of floating ice shelves. *J. Glaciol.*, 3(21), 38-42, 1957.

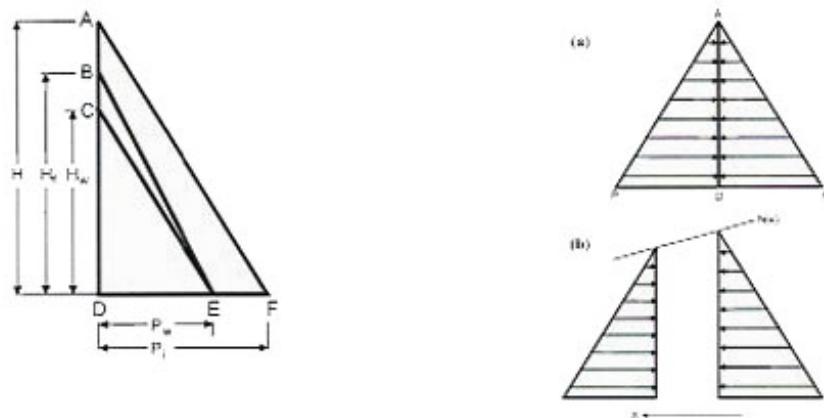
255

255
 256

Table 1: Resisting Stresses Linked to Floating Fraction $\phi = P_F/P_I$ of Ice and Gravitational Forces Numbered in Figure 2 for the Geometrical Force Balance.

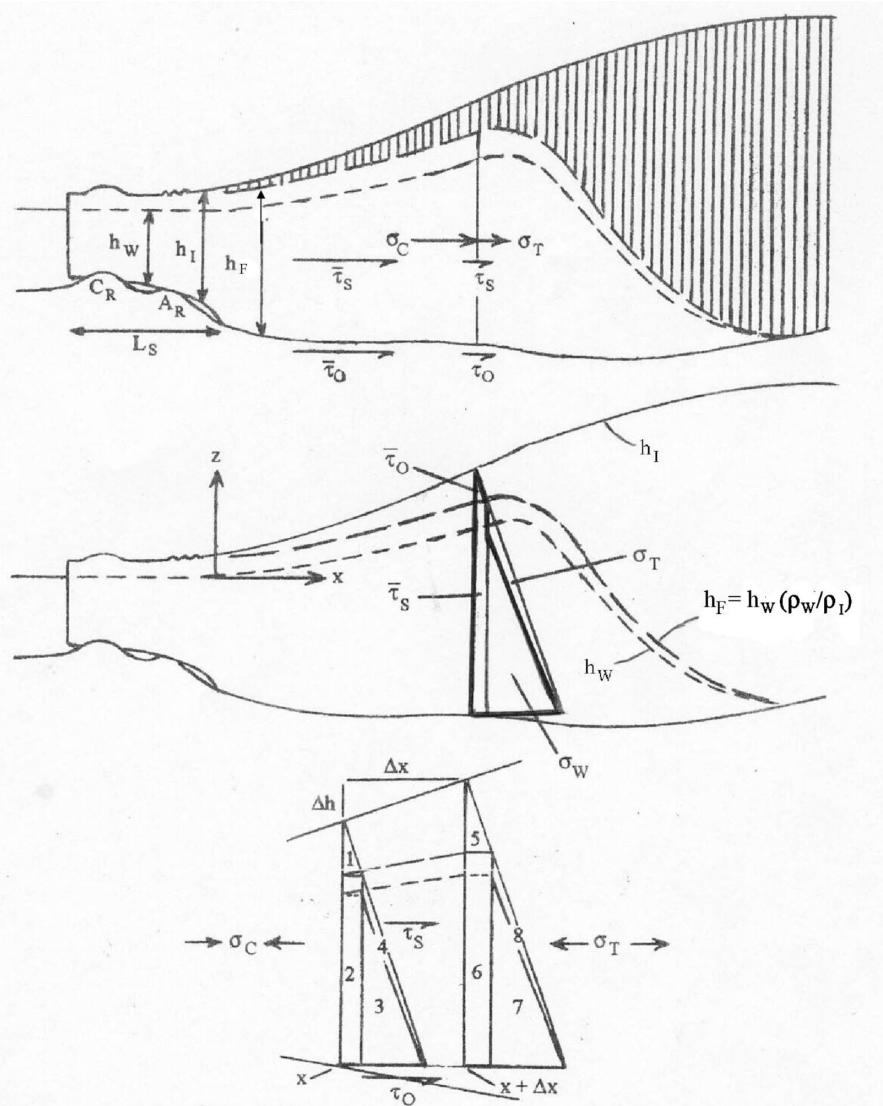
Basal water pressure at x , from gravity force 3:
$P_w = \rho_w g h_w$
Ice overburden pressure at x , from gravity force (1+2+3+4):
$P_I = \rho_I g h_I$
Upslope tensile stress at x , from gravity force 4:
$\sigma_T = \bar{P}_I (1 - \rho_I / \rho_w) \phi^2$
Downslope compressive stress at x due to $\bar{\tau}_o$ and $\bar{\tau}_s$ along x and σ_w at $x = 0$:
$\sigma_C = \bar{P}_I - \sigma_T = \bar{P}_I - \bar{P}_I (1 - \rho_I / \rho_w) \phi^2$
Downslope water-pressure stress at x , from gravity force 3:
$\sigma_w = \bar{P}_I (\rho_I / \rho_w) \phi^2$
Upslope flotation stress at x from gravity force (3+4):
$\sigma_F = \sigma_T + \sigma_w = \bar{P}_I \phi^2$
Longitudinal force balance at x from gravity force [(5+6+7+8)-(1+2+3+4)]:
$P_I \alpha = \partial(\sigma_F h_I) / \partial x + \tau_o + 2\tau_s (h_I / w_I)$
Flotation force gradient at x from gravity force [(7+8)-(3+4)]:
$\partial(\sigma_F h_I) / \partial x = P_I \phi (\phi \alpha_I + h_I \partial \phi / \partial x)$
Basal shear stress at x from gravity force (5-1):
$\tau_o = P_I (1 - \phi)^2 \alpha - P_I h_I (1 - \phi) \partial \phi / \partial x$
Side shear stress at x from gravity force (6-2):
$\tau_s = P_I (w_I / h_I) \phi (1 - \phi) \alpha + \bar{P}_I w_I (1 - 2\phi) \partial \phi / \partial x$
Average downslope basal shear stress to x from gravity force 1:
$\bar{\tau}_o = \bar{P}_I w_I h_I (1 - \phi)^2 / (w_I x + A_R)$
Average downslope side shear stress to x from gravity force 2:
$\bar{\tau}_s = P_I w_I h_I \phi (1 - \phi) / (2\bar{h}_I x + 2L_s \bar{h}_s + C_R \bar{h}_R)$

257



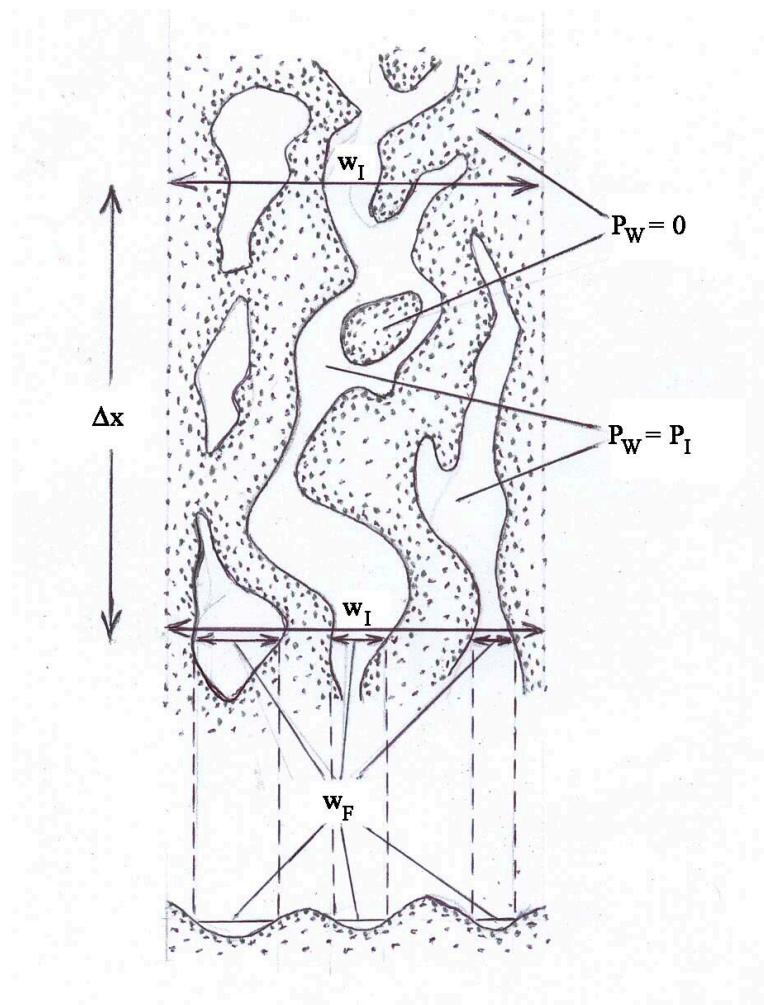
258

259 Figure 1: Figure 3 (left) and Figure 4 (right) from Van der Veen (2016).



260

261 Figure 2: Figure 5 from Hughes et al.(2016). Top: Stresses at x and downstream from x that
 262 resist gravitational forcing. The bed supports ice in the shaded area. Middle: The
 263 gravitational force inside the thick border is linked to σ_C which represents all downstream
 264 resistance to ice flow at point x . Bottom: Gravitational forces (geometrical areas 1 through
 265 8) and resisting stresses along incremental downstream length Δx at point x .



266

267 Figure 3: Figure 4 from Hughes et al. (2016). Under an ice stream, basal ice is grounded in
268 the shaded areas and floating in the unshaded areas (top) as seen in a transverse cross-
269 section (bottom) for incremental basal area $w_I \Delta x$.