The Cryosphere Discuss., doi:10.5194/tc-2017-6, 2017

Manuscript under review for journal The Cryosphere The Cryosphere
Published: 31 January 2017 Discussions
(© Author(s) 2017. CC-BY 3.0 License.

[N

Reply to “Basal buoyancy and fast-moving glaciers: in defense of analytic force
balance” by C. ]. van der Veen (2016)

N

Terence J. Hughes, Professor Emeritus of Earth Sciences and Climate Change
University of Maine

404 North Sixth Street, Fort Pierre, South Dakota 57532, U.S.A.

traditional approach. It solves the force (momentum), mass, and energy balances to obtain
three-dimensional solutions over time, beginning with the Navier-Stokes equations for the

9  force balance. Geometrical modeling employs simple geometry to solve the force and mass
10  balance in one dimension along ice flow. It is useful primarily to provide the first-order
11  physical basis of ice-sheet modeling for students with little background in mathematics
12 (Hughes, 2012). The geometric approach uses changes in ice-bed coupling along flow to
13 calculate changes in ice elevation and thickness, using floating fraction ¢ along a flowline

14  or flowband, where ¢ =0 for sheet flow, 0 < ¢ <1 for stream flow, and ¢ =1 for shelf flow.

15  This leads to confusion in reconciling the two approaches (Van der Veen, 2016). An attempt
16  is made at reconciliation.

3
4
5
6  Abstract. Two approaches to ice-sheet modeling are available. Analytical modeling is the
7
8

17 Introduction

18 Cornelis “Kees” Van der Veen's comparison of geometric and analytic approaches to the
19 force balance in glaciology in The Cryosphere (Van der Veen, 2016) is most welcome
20  Dbecause he takes seriously my geometrical approach to the longitudinal force balance,
21  citing many of my paper from when I first introduced the concept (Hughes, 1992) to the
22 latest application (Hughes et al, 2016). To begin, the analytic force balance is not
23 challenged. The geometric force balance is useful only for one-dimensional flow along ice-
24  sheet flowlines or flowbands of constant width. For two-dimensional flow in the map plane,
25  width become a variable and geometrical areas become geometrical volumes; substantially
26  increasing geometrical complexity with little advance in physical insight. The analytic force
27  balance is typically obtained by solving the Navier-Stokes equations, which can be done in
28 three dimensions and, when including the mass and energy balances, becomes time-
29 dependent. The geometrical approach is useful for understanding the force balance by
30 comparing the areas of right triangles and rectangles (or parallelograms).

31 Problems with Van der Veen (2016)

32 Equations (1), (2), (7), and (15) in Van der Veen (2016) can be confusing because they
33 employ open parenthesis ) instead of closed parentheses ( ) so terms are not properly
34 separated, and the symbol dis used as a partial derivative, as ice density, as a floating
35 fraction of ice, and with subscripts, as water density and as stresses. Despite that, these
36 equations are familiar to anyone who uses them in the analytic force balance and in my
37  geometric force balance.

38 More substantive are my concerns with his Figures. His Figure 1 is fine, but his Figure 2
39 compares apples and oranges, a longitudinal stress gradient with basal and side drag
40 stresses and a gravitational driving stress. A stress is not the same as a stress gradient but



The Cryosphere Discuss., doi:10.5194/tc-2017-6, 2017

Manuscript under review for journal The Cryosphere The Cryosphere
Published: 31 January 2017 Discussions
(© Author(s) 2017. CC-BY 3.0 License.

41
42
43
44
45
46

47
48
49
50
51
52

53

54
55
56

57

58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76
77

78
79

80
81

it allows Van der Veen (2016) to claim my gravitational “pulling stress” (Hughes, 1992)
acts in the same direction as the gravitational driving stress. My pulling stress is an actual
stress, the longitudinal tensile stress, not a longitudinal stress gradient. The pulling stress
exists from the calving front to the grounding line of an ice shelf and up ice streams that
supply the ice shelf. The pulling stress at the calving front of an ice shelf was derived
analytically by Weertman (1957) and geometrically by Robin (1958).

Readers of The Cryosphere can see the geometric force balance applied to the calving
front of an ice shelf and to a fully grounded ice sheet on a flat bed derived geometrically in
Appendix A of Hughes et al. (2016). These are the simplest applications that anyone who
knows the area of a triangle is half the height times the base can understand, the height
being ice or water height and the base being ice or water basal pressure. Van der Veen
(2016) sees these applications for sheet and shelf flow, but not for stream flow.

Van der Veen (2016) states my F, in his Equation (16) is not a longitudinal

gravitational driving force, but it is. Pressure has no direction so to get a longitudinal force
along ice flow it has be multiplied by the transverse cross-sectional area, which is variable
ice height for constant ice width. Hence, for basal ice pressure P, the gravitational driving

force is average ice pressure 13, times ice height H, which is the area of triangle ADF in his

Figure 3, which is reproduced as my Figure 1 (left) for comparison with my Figure 2, which
shows the correct geometry, Figure 5 in Hughes et al. (2016).

Figure 1 (left), Figure 3 in Van der Veen (2016), indicates he does not understand the
geometrical force balance for ice streams. Line AF should be parallel to line BE because
they both show how ice pressure increases with depth. Line CE shows how water pressure
increases with depth, as is obvious at the calving front. In the geometrical force balance, the
longitudinal gravitational driving force is area ADF of the big triangle. Fitted inside ADF are
a resisting flotation force given by area BDE for the floating ice fraction and a resisting drag
force given by area ABEF for the grounded ice fraction. Inside BDE is area CDE for the
resisting force from water pressure and area BCE for the resisting force from the tensile
strength of ice. Inside ABEF is the triangle above B for basal drag and the parallelogram
below B for side drag. Resistance from basal drag is the area of the triangle above B.
Resistance from side drag is the area of the parallelogram below B if lines BE and AF are
made parallel. If BE is made part of AF a rectangle would replace the parallelogram but the
area would be unchanged, see my Figure 2. That's all there is to it. The only remaining task
is to replace forces with products of stresses and lengths upon which the stresses act along
a flowline or a flowband of constant width. My solution for the force balance is exact. All
gravitational and resisting forces in the longitudinal direction of ice flow are included.

For example, at distance x from the ice-shelf grounding line in Figure 2, gravitational
driving force F,=Ph, is resisted by the sum of the upstream tensile pulling force
F, = 0,h, and the downstream compressive pushing force F. = 6.k, so ¢, = P, - o,.. Here
resisting force oA, is balanced by the gravitational force given by areas 1+2+3 in Figure 2

(center and bottom), and includes all downstream resistance due to averaged basal and
side shear stresses 7, and 7, respectively linked to gravitational areas 1 and 2, plus local
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water stress o, linked to area 3. The floating fraction of ice for floating area w.Ax in total
area w,Ax shown in my Figure 3 is ¢ =w,/w, =h. /h, = P, / P, for basal pressures P, and
P, that support ice of respective heights A, and #,. Pulling force o,h, resists the

gravitational driving force given by area 4 in Figure 2 (bottom), which is area 3+4 minus
area 3. Area 3+4 is one-half flotation height s, = h,¢ times basal floating length P, = P,¢,

so area 3+4 is Ph,¢’. Area 3 is one-half height hy, =(p, / p,)h. =(p, / p, )h,¢ times the
same basal floating length P, = P,¢. Then the tensile pulling stress is 6, = P(1—p, / p, )¢”.
It is that simple. At the calving front where ¢ =1 this is the solution obtained by Weertman
(1957) and Robin (1958). Table 1 lists all stresses resisting gravitational forcing at x.

Figure 1(right) shows Figure 4 in Van der Veen (2016). His Figure 4(a) is too simplistic.
If it were true there would be no thinning of a flat ice shelf or at ice divides of an ice sheet
because neither has a surface slope. Yet thinning of both occurs. For ice shelves the correct
analytical solution was provided by Weertman (1957, Appendix). Hughes (2012a, Chapter
9) provided the correct geometrical solution even if the ice shelf has a thickness gradient in
the flow direction. Raymond (1983) provided the correct analytical solution for ice divides.
The gravitational driving stress in his Figure 4(a) is the tensile longitudinal deviator stress,
my pulling stress, for both ice shelves and ice divides. The two triangles have equal areas so
there can be no spreading in his way of thinking because there is no ice surface slope. For
an ice shelf, one of his triangles should be moved to the calving front. Then he would see
the pulling force in action because a water triangle would replace his ice triangle. For an ice
divide, downslope motion on opposite flanks of the ice divide produce a longitudinal tensile
stress under the ice divide, and that lowers the ice divide.

Figure 1(right) also shows Figure 4(b) in Van der Veen (2016), which has a surface
slope, causing a difference in area of his two triangles. This difference is his gravitational
driving force for sheet flow, which is balanced by basal drag that requires a basal shear
stress applied along length Ax between the triangles as a drag force. There is no basal drag
under an ice shelf, except where surface ice rumples appear above basal pinning points, see
Figure 2. For stream flow, Figure 2 gives the correct geometrical representation of
gravitational forcing.

Van der Veen (2016) repeatedly refers to my 2008 unpublished research report, which
is not readily available. More complete and better treatments are in Hughes (2012a) and
Hughes et al. (2016). Van der Veen states, “Balance of forces is only meaningful if applied to
flow-line segments, not single locations. Consequently, the concept of force balance at any
location is inherently flawed.” Not true. The balance is meaningful at the calving front of an
ice shelf, a single location (Hughes et al,, 2016, Appendix A) and at any upstream point by
including a local compressive stress ¢, which includes downstream resistance to ice flow

all the way to the calving front, see Figure 2 (middle), and Equations (11) and (19) in
Hughes et al. (2016).

[ agree with Van der Veen (2016) that longitudinal stress gradients are important, and I
include downstream resistance to ice flow in my force balance at any point location, see
Figure 2 (top). Resisting stresses at that point are in Table 12.1 of Hughes (2012a) and are
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Equations (11) through (18) in Hughes et al. (2016). My longitudinal stress gradients
include basal and side shear stresses averaged over the downstream length to the calving
front of a linear flowband, see Table 12.1, divided by the corresponding downstream
flowband length, for sheet (d =0), stream (0 <d < 1), and shelf (d =1) flow, where 0 is the
floating fraction of ice in Van der Veen (2016), and is my ¢ .

Referring to Hughes (2008), Van der Veen (2016) is incorrect in stating I believe lateral
drag vanishes at the center of a glacier. Figure 1 (left) is his Figure 3, and represents his
longitudinal gravitational driving forces along flow if his lines AF and BE are parallel. Then
his area ABEF is gravitational forcing resisted by both basal and side drag in an ice stream,
neither of which vanishes until the ice stream becomes a freely floating ice shelf without
basal and side drag, see Figure 6 in Hughes et al. (2016). Only when the solution is for a
flowline, not a flowband, does the side shear stress, representing lateral drag, vanish. My
correct counterpart to Figure 3 in Van der Veen (2016) is Figure 2.

The Geometrical Force Balance

[ developed the geometrical force balance to teach the fundamentals of glaciology to
students with an inadequate background in mathematics, usually students studying to be
glacial geologists, so my geometrical approach was designed to make maximum use of
glacial geology in reconstructing former ice sheets (Hughes, 1998, Chapters 9 and 10) and
in demonstrating how basal thermal conditions produce glacial geology under present-day
ice sheets (Hughes, 1998, Chapter 3). Previously I had spent more time teaching calculus
than glaciology because the Navier-Stokes equations had to be integrated in the force
balance.

My geometrical force balance is shown in Figure 2, which is Figure 5 in Hughes et al.
(2016). Along incremental length Ax, change AF, in the longitudinal gravitational driving

force F, is balanced by change AF, in the tensile pulling force F, plus change AF, in the
water buttressing force F, plus basal drag force F, plus side drag force F;, where
F.=F.+F, is a flotation force that requires basal water. Dividing by Ax and letting
Ax — 0 gives as the longitudinal gravitational force gradient

OF, | 0x=0(P.h,)/ dx = Pat, = (G h,) | dx +T, + 2T (h, | w,)

where the bed is represented by an up-down staircase with successive Ax steps so ice
thickness gradient ¢, equals « for ice surface slope, P, is the overburden ice pressure at

the base, 7, is the basal shear stress, 7, is the side shear stress for two sides, #, is ice
thickness, A, is the height of water and £, is the flotation height of ice that would be
supported by basal water pressure P, such that P, =P, and &, =(p, / p,,)h, when h, =h,
for floating fraction ¢ =1, and o, = 0, + 0, is a flotation stress equal to ice tensile stress
o, in the Weertman (1957) and Robin (1958) solutions plus water buttressing stress o, .

Together they resist gravitational forcing in an ice shelf and in the floating fraction of an ice
stream. My o, would be R_ in Equation (1) of Van der Veen (2016), taking account of the
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different sign conventions, except my o, always requires basal water that uncouples ice
from the bed.

Resistance from my o, may be akin to bridging stresses across water-filled cavities
discussed by Van der Veen (2016). The existence of o, in the geometric force balance is
not readily apparent from analytic solutions of the Navier-Stokes equations, but Van der
Veen (2016) may have teased it out with his bridging stress, which forces him to add
resistance by including steep shear-stress gradients on each side of his water-filled cavities.
He maintains his cavities are small so these gradients average out to zero along an ice
stream, eliminating the need for my o,,. They cannot average to zero if cavities get bigger

and closer together downstream, as required to progressively uncouple ice from the bed.
Then cavities themselves have a size and distribution gradient. Figure 3, which is Figure 4
in Hughes et al. (2016), shows my concept of water-filled cavities in area w,Ax under an ice

stream. The plain fact is we do not know which concept of cavities is correct.

I developed the geometrical force balance over some decades, from Hughes (1992)
through Hughes et al. (2016). My papers are a work in progress, see pages 201-202 of
Hughes (2016) regarding h,,, h., 0, and o, not included in earlier papers. To access my

most recent thinking, see Hughes (2012) and Hughes et al. (2016). All the earlier studies
are flawed in various ways. The last ones may also have flaws [ haven’t detected. Criticisms
by Van der Veen (2016) are mainly directed at my earlier flawed papers.

This response gives me an opportunity to correct three mistakes in Hughes (2012a).
They will be obvious to the careful reader. The first line in Equation (12.9) should be:

(0 ,h) /O = a[% o, gh,z(pz} 3 = Po(oat, +h,d0 / )

and in the second line ¢ should be ¢”. In the denominator of Equation (17.18), r should be
replaced by (a—r). The first line of Equation (22.18) should be:

2 *
i =g () o) 28, 0, 200 _ 5
Ax ); \2), Ax  p,gh, pgw, p,gh

Equation (22.18) applies to sheet flow, for which ¢=0¢/dx=0 and 7, increases
resistance from basal drag 7, by including side drag 7, in flowbands having some side

shear. Since tributaries supplying ice streams are ubiquitous in the sheet-flow interior of
the Antarctic Ice Sheet (Hughes, 2012b), and tributaries are flowbands, side shear must be
taken into account even for sheet flow.

Concluding remarks

May I conclude with some general observations? Suppose an iceberg were released
where the two equal triangles meet in Figure 1 (right). This is Figure 4(a) in Van der Veen
(2016) for his ice shelf. He would have us believe the force balance was suddenly
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transformed to the balance analyzed by Robin (1978) at the calving front for the same ice
thickness. But the force balance does not change. Gordon Robin also did not understand
this. I submitted my manuscript, “On the pulling power of ice streams” to the Journal of
Glaciology in 1988. Gordon rejected it on the grounds that the geometrical force balance he
used at the calving front didn’t apply back to the grounding line and up ice streams that
supply the ice shelf because water height £, existed only at the calving front. My reply to

that is given on pages 201-202 of Hughes et al. (2016). I had given my manuscript to
Mikhail Grosswald and he showed it to Russian glaciologists, resulting in an invitation to
present my geometrical force balance to the U.S.S.R. Academy of Sciences. In case Gordon
had spotted a fatal flaw, on my way to Moscow I stopped in Cambridge to discuss it with
Gordon and Charles Swithinbank. Charles understood the concept. Gordon did not; he just
“knew” the concept had to be wrong. My manuscript was finally published four years later
through the efforts of Garry Clarke as Editor-in-Chief (Hughes, 1992).

I had the same experience with Johannes Weertman. When I presented my “theory of
thermal convection in polar ice sheets” at a 1975 symposium of the International
Glaciological Society (Hughes, 1976), Hans told me, “I feel in my bones it doesn’t happen.” |
replied, “Let me know when you hear from your brain.” Well, it still hasn’t “happened” even
when it seemed to me the evidence was staring us right in the face (Hughes, 1985).
Weertman’s “bones” may be more reliable than Hughes’ brain. Be that as it may, now I
believe thermal convection rolls underlie tributaries of ice streams, which are ubiquitous
on the Antarctic Ice Sheet, and [ have recommended field tests of this idea (Hughes, 2012).

Here’s another example: The L.G.S. reviewers didn’t like the way I used glacial geology to
reconstruct ice sheets at the Last Glacial Maximum 18,000 years ago from the bottom up
for CLIMAP (Climate: Long-range Investigation, Mapping, and Prediction) in 1980, so
George Denton and I published our CLIMAP work as a book (Denton and Hughes, 1981).
The book is now a classic. The bottom-up geometrical approach using glacial geology can
also be used to reconstruct ice sheets for a whole glaciation cycle (Hughes, 1998, Chapters
9 and 10), and for comparison with ice sheets reconstructed using the analytical approach
(Fastook and Hughes, 2013).

These experiences characterize my half-century in science. Cornelis van der Veen
understands ice dynamics as well as anyone, so I am left with the puzzlement expressed by
the Apostle Paul in Acts 28:26. “You may listen carefully yet you will never understand; you
may look intently yet you will never see.” He is not alone. Reviewers of his paper also did
not see the obvious. Maybe it is obvious only to me.

Acknowledgements. 1 thank Cornelis van der Veen for giving me the opportunity to further
explain the geometric force balance in relation to the analytic force balance.
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Table 1: Resisting Stresses Linked to Floating Fraction ¢ = Pr/P; of Ice and Gravitational
Forces Numbered in Figure 2 for the Geometrical Force Balance.

Basal water pressure at x, from gravity force 3:
Py = py&hy

Ice overburden pressure at x, from gravity force (1+2+3+4):
P =p,gh,

Upslope tensile stress at x, from gravity force 4:
O :ﬁl(l_pl /pw)d)2

Downslope compressive stress at x due to 7, and 7 along x and ow at x = 0:

GC:E_GT:E_FI(l_p[/pW)¢2

Downslope water-pressure stress at x, from gravity force 3:
Oy = }_)1(/)1 /PW)(DZ

Upslope flotation stress at x from gravity force (3+4):
0,=0;10y =ﬁ1¢2

Longitudinal force balance at x from gravity force [(5+6+7+8)-(1+2+3+4)]:
Po=09(o,h,)/0x+1,+21s(h I w,)

Flotation force gradient at x from gravity force [(7+8)-(3+4)]:
d(o,h,)/dx=P¢(pa, +h,0¢ / Ox)

Basal shear stress at x from gravity force (5-1):
7o =P (1-9) a—Ph, (1-9)9¢/ox

Side shear stress at x from gravity force (6-2):
To=P(w, /h)p(1-9)a+ Pw,(1-2¢)d¢ /ox

Average downslope basal shear stress to x from gravity force 1:
Tp = ﬁlwlhl (1 - ¢)2 /(Wlx + AR)

Average downslope side shear stress to x from gravity force 2:

Ty = Pw,h¢(1- )/ (2hx +2Lshg + Cyhy)
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259 Figure 1: Figure 3 (left) and Figure 4 (right) from Van der Veen (2016).
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Figure 2: Figure 5 from Hughes et al.(2016). Top: Stresses at x and downstream from x that
resist gravitational forcing. The bed supports ice in the shaded area. Middle: The
gravitational force inside the thick border is linked to 6. which represents all downstream
resistance to ice flow at point x. Bottom: Gravitational forces (geometrical areas 1 through
8) and resisting stresses along incremental downstream length Ax at point x.
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266

267  Figure 3: Figure 4 from Hughes et al. (2016). Under an ice stream, basal ice is grounded in
268  the shaded areas and floating in the unshaded areas (top) as seen in a transverse cross-
269  section (bottom) for incremental basal area w,Ax.
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